航空發(fā)動(dòng)機(jī)主軸軸承狀態(tài)監(jiān)測(cè)研究現(xiàn)狀與發(fā)展趨勢(shì)(三)
發(fā)布時(shí)間:
2023-01-13
來(lái)源:
航空動(dòng)力學(xué)報(bào)
信息融合方法實(shí)際上是對(duì)人腦綜合處理復(fù)雜問(wèn)題的一種模擬。在多傳感器系統(tǒng)中,各種傳感器提供的信息可能具有不同的特性,通過(guò)在空間和時(shí)間上充分利用多個(gè)傳感器資源,對(duì)各種觀測(cè)信息進(jìn)行合理的支配與使用,把冗余互補(bǔ)的信息依據(jù)某種準(zhǔn)則進(jìn)行結(jié)合,產(chǎn)生對(duì)觀測(cè)對(duì)象的一致性描述,同時(shí)產(chǎn)生新的融合效果?;诟鱾鞲衅鞯莫?dú)立觀測(cè)信息,通過(guò)對(duì)信息的優(yōu)化組合導(dǎo)出多的有效信息,最終提升整個(gè)系統(tǒng)的有效性。主軸軸承的信號(hào)故障特征弱、背景噪聲強(qiáng),信息融合方法處理這種信號(hào)具有其良好的優(yōu)勢(shì)。
3 基于信息融合的多傳感器信號(hào)分析方法
信息融合方法實(shí)際上是對(duì)人腦綜合處理復(fù)雜問(wèn)題的一種模擬。在多傳感器系統(tǒng)中,各種傳感器提供的信息可能具有不同的特性,通過(guò)在空間和時(shí)間上充分利用多個(gè)傳感器資源,對(duì)各種觀測(cè)信息進(jìn)行合理的支配與使用,把冗余互補(bǔ)的信息依據(jù)某種準(zhǔn)則進(jìn)行結(jié)合,產(chǎn)生對(duì)觀測(cè)對(duì)象的一致性描述,同時(shí)產(chǎn)生新的融合效果?;诟鱾鞲衅鞯莫?dú)立觀測(cè)信息,通過(guò)對(duì)信息的優(yōu)化組合導(dǎo)出多的有效信息,最終提升整個(gè)系統(tǒng)的有效性。主軸軸承的信號(hào)故障特征弱、背景噪聲強(qiáng),信息融合方法處理這種信號(hào)具有其良好的優(yōu)勢(shì)。
3.1 信息融合方法的特點(diǎn)
單一類(lèi)型的傳感器采集信息有限,采用多種傳感器可以進(jìn)行信息互補(bǔ),提升健康狀態(tài)監(jiān)測(cè)的準(zhǔn)確率。Duan等[77]分析了不同類(lèi)型的狀態(tài)監(jiān)測(cè)技術(shù)的優(yōu)缺點(diǎn),認(rèn)為多傳感器信息融合是未來(lái)機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)的發(fā)展趨勢(shì);林桐等[78]提出一種基于標(biāo)準(zhǔn)化歐氏距離的多特征融合評(píng)估方法,通過(guò)試驗(yàn)證明該方法優(yōu)于主元分析(principal components analysis,PCA)及支持向量數(shù)據(jù)描述(support vector data description,SVDD)方法。
按照數(shù)據(jù)抽象的層次,融合可以劃分為3個(gè)級(jí)別,數(shù)據(jù)層融合、特征層融合及決策層融合。
數(shù)據(jù)層融合直接對(duì)傳感器的觀測(cè)值進(jìn)行融合,優(yōu)點(diǎn)在于具有其他層次方法無(wú)法企及的準(zhǔn)確性。缺點(diǎn)在于運(yùn)算量較大且無(wú)法進(jìn)行異構(gòu)數(shù)據(jù)的融合。主要算法包括線性加權(quán)類(lèi)算法、Kalman濾波[79]方法等。
特征層融合由每個(gè)傳感器計(jì)算出能夠代表該傳感器觀測(cè)值的特征向量,并將此向量進(jìn)行融合處理。優(yōu)點(diǎn)在于,這類(lèi)方法實(shí)現(xiàn)了可觀的數(shù)據(jù)壓縮;缺點(diǎn)在于,原始數(shù)據(jù)中的細(xì)微信息可能丟失。主要算法包括:核主元分析(kernel principal component analysis,KPCA)、支持向量機(jī)(support vector machine,SVM)、神經(jīng)網(wǎng)絡(luò)、k最鄰近分類(lèi)算法(k?nearest neighbor,kNN)方法等。
決策層融合通過(guò)融合每個(gè)傳感器的決策得出系統(tǒng)決策。優(yōu)點(diǎn)在于:對(duì)運(yùn)算性能要求較低,不要求采集設(shè)備是同類(lèi)傳感器。缺點(diǎn)在于原始數(shù)據(jù)損失大,對(duì)微小因素的表現(xiàn)不明顯。主要算法包括專家系統(tǒng)、Dempster?Shafer(D?S)證據(jù)理論[80?81]等。
3.2 主要算法
信息融合方法的發(fā)展與數(shù)學(xué)理論的不斷推陳出新密不可分。數(shù)學(xué)方法是信息融合方法的基本工具,數(shù)據(jù)的合理表達(dá)需要經(jīng)過(guò)數(shù)學(xué)方法對(duì)信號(hào)進(jìn)行處理,常用算法如下:
1)加權(quán)平均算法。這種方法是將傳感器的觀測(cè)數(shù)據(jù)按照一定的權(quán)值進(jìn)行相加,并作為融合的結(jié)果。加權(quán)平均法[82]的優(yōu)點(diǎn)在于算法的穩(wěn)定性較好,可以突出數(shù)據(jù)中的細(xì)微信息;缺點(diǎn)在于相對(duì)來(lái)說(shuō)運(yùn)算量較大。
2)Kalman濾波。Kalman濾波[79]方法主要用針對(duì)傳感器的冗余信息進(jìn)行融合。Kalman濾波方法的計(jì)算方式為遞推,不需要進(jìn)行大量數(shù)據(jù)的計(jì)算與存儲(chǔ),不要求系統(tǒng)有比較強(qiáng)的計(jì)算能力。
3)D?S證據(jù)理論。證據(jù)理論是由Dempster[83]和Shafer[84]提出的一種方法,在解決決策沖突中具有良好的效果。證據(jù)理論的優(yōu)點(diǎn)在于具有直接表示“不確定”的能力;缺點(diǎn)在于要求證據(jù)是獨(dú)立的,其合成規(guī)則存在比較大的爭(zhēng)議,計(jì)算上存在潛在的指數(shù)爆炸等。嚴(yán)新平等[85]提出一種基于D?S證據(jù)理論,利用光譜、鐵譜等進(jìn)行信息融合對(duì)軸承擦傷、熱損傷剝落等進(jìn)行分類(lèi)的方法。
4)人工智能。人工智能技術(shù)作為一種新興的故障診斷方法受到關(guān)注,在復(fù)雜系統(tǒng)中具有較好的效果。Lin等[86]提出一種基于超球面判據(jù)的航空發(fā)動(dòng)機(jī)主軸軸承人工智能融合診斷方法,通過(guò)試驗(yàn)數(shù)據(jù)證明該方法具有較高的準(zhǔn)確率?;谌斯ぶ悄艿脑\斷方法主要包括神經(jīng)網(wǎng)絡(luò)[87],機(jī)器學(xué)習(xí)[88],模糊邏輯[89]、遺傳算法[90],隱馬爾可夫模型[91],貝葉斯方法[92],支持向量機(jī)[93]等。
人工智能方法的優(yōu)點(diǎn)在于診斷結(jié)果依賴于觀測(cè)數(shù)據(jù),與系統(tǒng)復(fù)雜程度無(wú)關(guān),對(duì)于一些復(fù)雜的系統(tǒng)有比較好的效果;缺點(diǎn)在于完成學(xué)習(xí)過(guò)程需要各種狀態(tài)下的樣本數(shù)據(jù),而且診斷的精度與樣本的完整性和代表性具有非常大的關(guān)系。
4 發(fā)展趨勢(shì)
隨著航空技術(shù)的不斷發(fā)展,航空發(fā)動(dòng)機(jī)的轉(zhuǎn)速不斷提升,主軸軸承的Dn值已向4×106mm•r/min發(fā)展。為適應(yīng)加苛刻的航空工況,主軸軸承的狀態(tài)監(jiān)測(cè)方法存在大的挑戰(zhàn)。航空發(fā)動(dòng)機(jī)主軸軸承狀態(tài)監(jiān)測(cè)的重點(diǎn)與難點(diǎn)在于準(zhǔn)確的數(shù)據(jù)采集與的數(shù)據(jù)分析。傳感器技術(shù)不斷發(fā)展,許多不同形式的高靈敏度傳感器相繼問(wèn)世,但要適應(yīng)高溫、高應(yīng)力、油霧環(huán)境、大振動(dòng)的航空工況是一項(xiàng)非常具有挑戰(zhàn)性的工作,復(fù)雜工況下,高背景噪聲信號(hào)的快速、有效處理也具有相當(dāng)大的難度。
4.1 機(jī)理研究方向
主軸軸承的材料變化會(huì)導(dǎo)致傳感器信號(hào)變化,集成結(jié)構(gòu)應(yīng)用影響信號(hào)傳遞路徑,傳感器工作環(huán)境高溫影響信號(hào)穩(wěn)定性,試驗(yàn)載荷譜及等效加速方法將影響數(shù)據(jù)有效性。
1)材料特性對(duì)傳感器響應(yīng)的影響[94]。主軸軸承新材料的使用成為必然趨勢(shì),而新的本構(gòu)方程將直接影響聲發(fā)射等傳感器的信號(hào)采集。建立材料性能數(shù)據(jù)庫(kù)并不斷完善對(duì)提升狀態(tài)監(jiān)測(cè)效果具有重要價(jià)值。
2)動(dòng)態(tài)特性對(duì)傳感器信號(hào)采集的影響[10]。航空發(fā)動(dòng)機(jī)為追求性能提升,不斷進(jìn)行結(jié)構(gòu)優(yōu)化。主軸軸承已應(yīng)用彈支、薄壁等結(jié)構(gòu)并朝著集成化發(fā)展,振動(dòng)、聲發(fā)射等信號(hào)的傳遞路徑可能發(fā)生較大改變。對(duì)新型結(jié)構(gòu)的動(dòng)力學(xué)特性進(jìn)行研究,選擇合適的傳感器測(cè)點(diǎn)對(duì)減少噪聲干擾,提升信號(hào)質(zhì)量具有重要意義。
3)溫度場(chǎng)計(jì)算方法[95]。主軸軸承接觸表面的溫度不可直接測(cè)量,需要通過(guò)計(jì)算溫度場(chǎng)進(jìn)行估計(jì)。隨著主軸軸承最高工作溫度不斷提升,需要對(duì)現(xiàn)有計(jì)算方法進(jìn)行改進(jìn)以提升精度及效率。
4)試驗(yàn)參數(shù)對(duì)數(shù)據(jù)有效性的影響[15]。主軸軸承從設(shè)計(jì)到應(yīng)用需要經(jīng)過(guò)4級(jí)試驗(yàn),即材料試驗(yàn)、標(biāo)準(zhǔn)軸承試驗(yàn)、全尺寸模擬工況試驗(yàn)和主機(jī)系統(tǒng)評(píng)價(jià)試驗(yàn)。整個(gè)評(píng)價(jià)的過(guò)程中,需要研究合理的載荷譜保證試驗(yàn)器的試驗(yàn)條件能夠達(dá)到對(duì)主軸軸承工況的有效模擬,以及能夠縮短時(shí)間的等效加速試驗(yàn)方法。
4.2 傳感器方向
適應(yīng)高溫、高振動(dòng)、油霧環(huán)境,結(jié)構(gòu)微型化、無(wú)線化將成為主軸軸承傳感器未來(lái)的發(fā)展方向[96]。
1)惡劣工作環(huán)境適應(yīng)[97]。實(shí)現(xiàn)傳感器微型化、無(wú)線化,消除因預(yù)留傳感器供電線與傳感器信號(hào)傳輸線對(duì)發(fā)動(dòng)機(jī)結(jié)構(gòu)的影響,克服復(fù)雜環(huán)境下的信號(hào)干擾;針對(duì)復(fù)雜苛刻工況下應(yīng)用的半導(dǎo)體、金屬等敏感元件新型加工工藝。
2)新型傳感材料的應(yīng)用[98]。將納米發(fā)電材料、石墨烯等智能料應(yīng)用于傳感器以提升靈敏度;開(kāi)發(fā)可嵌入主軸軸承,適用于高溫、油霧環(huán)境、大量程、抗干擾能力強(qiáng)、高采樣頻率的新型傳感器,提升診斷準(zhǔn)確性。
3)多傳感器潤(rùn)滑系統(tǒng)監(jiān)測(cè)[12,61,99]。潤(rùn)滑系統(tǒng)中陶瓷、鈦合金等非鐵磁性顆粒數(shù)量、形態(tài)等參數(shù)的實(shí)時(shí)測(cè)量;光譜、鐵譜監(jiān)測(cè)方法的在線化;潤(rùn)滑油理化特性在線監(jiān)測(cè)傳感器開(kāi)發(fā)。
4)高溫測(cè)量傳感器[100?101]。高速重載工況下的旋轉(zhuǎn)套圈溫度測(cè)量方法;量子點(diǎn)傳感器的接觸區(qū)溫度與應(yīng)力測(cè)量;接觸區(qū)高響應(yīng)瞬態(tài)溫度傳感器;集成抗磨損功能的涂層溫度傳感器;非接觸式紅外溫度采集方法的應(yīng)用。
5)動(dòng)態(tài)特性監(jiān)測(cè)[102?103]?;诔暤确椒ǖ臐?rùn)滑油膜厚度動(dòng)態(tài)測(cè)量方法;基于納米發(fā)電材料的轉(zhuǎn)速測(cè)量方法;滾動(dòng)體局部打滑的在線監(jiān)測(cè)方法;測(cè)量溫度、應(yīng)力、轉(zhuǎn)速等參數(shù)的嵌入式光纖傳感器研究;主軸軸承各個(gè)摩擦副的磨損在線監(jiān)測(cè)方法;基于高速攝影方法的旋轉(zhuǎn)元件信息采集。
4.3 算法方向
高精度、高計(jì)算效率的多元信息融合與決策方法將成為主軸軸承的狀態(tài)監(jiān)測(cè)數(shù)據(jù)處理算法的發(fā)展方向[77,104]。
1)振動(dòng)監(jiān)測(cè)。開(kāi)發(fā)精度高、計(jì)算快的數(shù)據(jù)處理算法;解決主軸軸承工作過(guò)程中的大范圍工況變化、多振源耦合、高背景噪聲等問(wèn)題。
2)針對(duì)聲發(fā)射信號(hào),開(kāi)發(fā)高采樣頻率信號(hào)的快速處理方法,并通過(guò)傳感器信號(hào)判斷損傷部位,定量判斷損傷大小。
3)潤(rùn)滑油監(jiān)測(cè)。研究潤(rùn)滑油大流量與高流速下的顆粒計(jì)數(shù)方法,以及顆粒形貌表征方法;潤(rùn)滑油理化特性傳感器采集數(shù)據(jù)的處理方法。
4)基于圖像處理方法的結(jié)構(gòu)損傷判斷、潤(rùn)滑油性能評(píng)估、顆粒計(jì)數(shù)與形貌分析。
5)智能傳感器?;跍囟?、振動(dòng)、潤(rùn)滑油等多傳感器數(shù)據(jù),結(jié)合信息融合方法形成主軸軸承服役狀態(tài)與性能預(yù)測(cè)的集成化動(dòng)態(tài)評(píng)估方法;通過(guò)集成多傳感器冗余信息結(jié)合信號(hào)處理技術(shù),提升監(jiān)測(cè)系統(tǒng)的可靠性,形成軟硬協(xié)同的視情維護(hù)策略;面向工況需求形成基于壽命和可靠性的軸承智能管控系統(tǒng),根據(jù)軸承理論計(jì)算、歷史數(shù)據(jù)和運(yùn)行數(shù)據(jù)結(jié)合人工智能技術(shù)推測(cè)未來(lái)的動(dòng)態(tài)使用壽命,并依據(jù)一定的規(guī)則,給出主軸軸承潤(rùn)滑條件等參數(shù)的調(diào)整意見(jiàn)。
4.4 人工智能方法數(shù)據(jù)庫(kù)建立
數(shù)字孿生與人工智能[88,105?108]。建立主軸軸承材料試驗(yàn)、標(biāo)準(zhǔn)軸承試驗(yàn)、全尺寸模擬工況試驗(yàn)和主機(jī)系統(tǒng)評(píng)價(jià)試驗(yàn)的多傳感器數(shù)據(jù)數(shù)據(jù)庫(kù),建立物理模型與數(shù)字模型,通過(guò)物理模型與數(shù)字模型之間的數(shù)據(jù)交互不斷修正模型,基于人工智能技術(shù)預(yù)測(cè)主軸軸承在不同工況下的服役性能,模擬主軸軸承的損傷,給出不同條件下的主軸軸承失效邊界。
建立主軸軸承運(yùn)行歷史多傳感器數(shù)據(jù)數(shù)據(jù)庫(kù),保存軸承從開(kāi)始服役到最終失效的全部數(shù)據(jù)以及對(duì)應(yīng)的工況參數(shù),以海量數(shù)據(jù)作為支撐,結(jié)合人工智能技術(shù)對(duì)主軸軸承的設(shè)計(jì)參數(shù)、加工方法、裝配方式等進(jìn)行指導(dǎo),優(yōu)化數(shù)字模型,修正失效邊界,并給出故障預(yù)警閾值的參考。
參考文獻(xiàn)略(來(lái)源:航空動(dòng)力學(xué)報(bào))
關(guān)鍵詞:主軸軸承、特種軸承
相關(guān)新聞
主要業(yè)務(wù)為重大型軸承、大型軸承的研究、開(kāi)發(fā)、生產(chǎn)和銷(xiāo)售,熱處理服務(wù)等,產(chǎn)品廣泛應(yīng)用于風(fēng)電、盾構(gòu)、工程機(jī)械、礦山冶金、石油化工、醫(yī)療器械、光伏等各個(gè)領(lǐng)域。
洛陽(yáng)軸研科技有限公司
地址:河南省洛陽(yáng)市澗西區(qū)科技工業(yè)園三西路一號(hào)
銷(xiāo)售:18237986199 15090185138
© 2023 洛陽(yáng)軸研科技有限公司 本網(wǎng)站支持IPV6 營(yíng)業(yè)執(zhí)照 網(wǎng)站建設(shè):中企動(dòng)力 洛陽(yáng) SEO標(biāo)簽