航空發(fā)動(dòng)機(jī)主軸軸承狀態(tài)監(jiān)測(cè)研究現(xiàn)狀與發(fā)展趨勢(shì)(二)
發(fā)布時(shí)間:
2023-01-13
來(lái)源:
航空動(dòng)力學(xué)報(bào)
主軸軸承由于其高載荷、大范圍工況變化,從表現(xiàn)出損傷特征到失效的時(shí)間較短,因此一旦發(fā)現(xiàn)故障征兆,應(yīng)果斷調(diào)整運(yùn)行工況,盡快安排檢修。依據(jù)傳感器監(jiān)測(cè)信號(hào)類別的不同,傳感器分為振動(dòng)傳感器、聲傳感器、聲發(fā)射傳感器等。
2 主軸軸承主要狀態(tài)監(jiān)測(cè)方法
主軸軸承由于其高載荷、大范圍工況變化,從表現(xiàn)出損傷特征到失效的時(shí)間較短,因此一旦發(fā)現(xiàn)故障征兆,應(yīng)果斷調(diào)整運(yùn)行工況,盡快安排檢修。依據(jù)傳感器監(jiān)測(cè)信號(hào)類別的不同,傳感器分為振動(dòng)傳感器、聲傳感器、聲發(fā)射傳感器等。
2.1 振動(dòng)特征監(jiān)測(cè)方法
主軸軸承產(chǎn)生疲勞、磨損等故障時(shí),會(huì)產(chǎn)生異常的振動(dòng)。振動(dòng)監(jiān)測(cè)方法通過(guò)在軸承座或箱體適當(dāng)方位安裝振動(dòng)傳感器采集信號(hào)并進(jìn)行分析得以實(shí)現(xiàn)。
振動(dòng)傳感器安裝位置受限于發(fā)動(dòng)機(jī)結(jié)構(gòu),通常只在航空發(fā)動(dòng)機(jī)的機(jī)匣處安裝一個(gè)振動(dòng)傳感器,且航空發(fā)動(dòng)機(jī)系統(tǒng)存在振動(dòng)傳遞路徑長(zhǎng),頻率成分復(fù)雜,信號(hào)衰減嚴(yán)重等問(wèn)題,這對(duì)振動(dòng)信號(hào)的分析方法提出了較高的要求[34]。
陳果等[35]研究了基于機(jī)匣測(cè)點(diǎn)信號(hào)進(jìn)行主軸軸承故障診斷的靈敏性問(wèn)題,當(dāng)滾動(dòng)軸承和機(jī)匣的連接剛度較小時(shí)振動(dòng)信號(hào)會(huì)產(chǎn)生很大的衰減,但通過(guò)選擇合適的方法依舊可以進(jìn)行較為準(zhǔn)確的診斷;張向陽(yáng)等[36]提出一種基于卷積神經(jīng)網(wǎng)絡(luò)的機(jī)匣振動(dòng)信號(hào)軸承故障診斷方法,通過(guò)試驗(yàn)證明了該方法的有效性。
通過(guò)對(duì)振動(dòng)信號(hào)計(jì)算時(shí)域特征、頻域特征以及時(shí)頻域特征參數(shù)可以進(jìn)行診斷[37?38]。時(shí)域參數(shù)包括有效值、方均根值、峰值等有量綱參數(shù)及峭度、峰值因數(shù)、波形因數(shù)、裕度指標(biāo)等無(wú)量綱參數(shù);頻域分析法包括功率譜、幅值譜、倒譜、復(fù)倒譜、高階譜和包絡(luò)譜等;時(shí)頻方法包括短時(shí)傅里葉變換、Wigner?Ville分布[39]、譜峭度[37,40]、小波分析[41]、隨機(jī)共振[34,42]等。
國(guó)內(nèi)外的學(xué)者基于航空發(fā)動(dòng)機(jī)主軸軸承的振動(dòng)信號(hào)提出了許多故障診斷方法,通過(guò)試驗(yàn)等方法證明其具有較高的實(shí)用性與準(zhǔn)確性。Zhang等[43]提出一種AMS(alternative minimization solver)?CluLR方法,通過(guò)航空發(fā)動(dòng)機(jī)軸承高速試驗(yàn)證明算法可以準(zhǔn)確識(shí)別軸承的外圈故障;Wang等[44]提出了一種基于支持向量機(jī)的航空發(fā)動(dòng)機(jī)高速軸承早期故障定量診斷的方法,可以區(qū)分不同故障類型以及同一類型故障的不同程度;廖明夫等[45]發(fā)現(xiàn)航空發(fā)動(dòng)機(jī)中介軸承振動(dòng)信號(hào)頻譜中會(huì)產(chǎn)生不隨轉(zhuǎn)速變化的倍頻“恒間距”特征,通過(guò)試驗(yàn)證明該特征可以作為故障診斷的依據(jù)。
由于振動(dòng)信號(hào)采集方便,傳感器價(jià)格相對(duì)較低,理論較為成熟等原因,國(guó)內(nèi)外的各種滾動(dòng)軸承監(jiān)測(cè)系統(tǒng)大多基于振動(dòng)傳感器進(jìn)行開(kāi)發(fā)。
2.2 聲學(xué)特征監(jiān)測(cè)方法
本質(zhì)上,聲音是由振動(dòng)產(chǎn)生并經(jīng)過(guò)介質(zhì)進(jìn)行傳播的,同樣可以反映軸承工作狀態(tài),但容易受到噪聲干擾。聲音信號(hào)的分析方法在傳感器采集位置距聲源較近時(shí)和振動(dòng)信號(hào)基本一致,但傳感器易受各種雜音干擾,技術(shù)難度較高,應(yīng)用不及振動(dòng)方法較廣。
王雅紅等[46]提出一種基于乏信息系統(tǒng)的本征融合技術(shù),通過(guò)軸承噪聲試驗(yàn),證明聲學(xué)監(jiān)測(cè)方法可以有效地采集軸承的特征信號(hào),并可以根據(jù)采集數(shù)據(jù)模擬乏信息研究對(duì)象的分布特征,對(duì)解決小批量航空軸承的性能評(píng)估問(wèn)題具有重要意義。
聲學(xué)方法具有攜帶信息豐富和非接觸測(cè)量的特點(diǎn),在某些安裝振動(dòng)傳感器存在一定困難的復(fù)雜條件下,聲學(xué)方法具有其良好的優(yōu)勢(shì)。
2.3 聲發(fā)射特征監(jiān)測(cè)方法
聲發(fā)射傳感器的基本原理是收集固體在應(yīng)力作用下產(chǎn)生的彈性波[47],在高轉(zhuǎn)速軸承的信號(hào)分析中具優(yōu)勢(shì)。Liu等[48]通過(guò)試驗(yàn)采集了軸承全壽命周期的聲發(fā)射信號(hào)方均根(root mean square,RMS)值,從圖3中可以發(fā)現(xiàn)軸承在裂紋在萌生、擴(kuò)展及退化失效階段會(huì)產(chǎn)生較高幅值的沖擊;Li等[49]提出一種基于聲發(fā)射技術(shù)的航空軸承故障檢測(cè)方法,通過(guò)試驗(yàn)驗(yàn)證了方法的有效性。
聲發(fā)射技術(shù)是一種動(dòng)態(tài)的無(wú)損檢測(cè)方法,不會(huì)對(duì)零件造成損傷。這種監(jiān)測(cè)方法的優(yōu)點(diǎn)在于,傳感器不需要外部提供能量,具有較強(qiáng)的環(huán)境適應(yīng)性,對(duì)設(shè)備的尺寸與負(fù)載不敏感,不易受到低頻噪聲干擾;缺點(diǎn)在于,受到構(gòu)件材料影響較大,對(duì)已經(jīng)存在但未發(fā)生擴(kuò)展的裂紋無(wú)法進(jìn)行檢測(cè),且對(duì)數(shù)據(jù)存儲(chǔ)系統(tǒng)與信號(hào)分析系統(tǒng)要求較高。
2.4 潤(rùn)滑油特征監(jiān)測(cè)方法
主軸軸承通常都有大流量潤(rùn)滑油循環(huán)使用,當(dāng)出現(xiàn)磨損、疲勞等會(huì)產(chǎn)生顆粒進(jìn)入潤(rùn)滑油。潤(rùn)滑系統(tǒng)中的磨屑質(zhì)量濃度和顆粒尺寸會(huì)隨時(shí)間變化,如圖4所示,根據(jù)潤(rùn)滑系統(tǒng)中的磨屑尺寸、質(zhì)量濃度、形貌、成分可以判斷設(shè)備是否故障及故障位置。
潤(rùn)滑油監(jiān)測(cè)技術(shù)包括理化分析[50?53]、光譜分析[54]、鐵譜分析[55?56]、顆粒計(jì)數(shù)[57]等。在潤(rùn)滑系統(tǒng)中通常都會(huì)安裝過(guò)濾網(wǎng),過(guò)濾從軸承等元件上脫落的顆粒,保持潤(rùn)滑油的清潔。不同使用環(huán)境下的潤(rùn)滑油過(guò)濾網(wǎng)具有不同的過(guò)濾精度。
民航等發(fā)動(dòng)機(jī)系統(tǒng)工況較為平穩(wěn)且運(yùn)行時(shí)間較長(zhǎng),要求潤(rùn)滑油具有較高的清潔度;戰(zhàn)斗機(jī)以及導(dǎo)彈等要求非常高的機(jī)動(dòng)性,會(huì)產(chǎn)生大量磨屑,如果采用較高的過(guò)濾精度則會(huì)使大量顆粒被阻攔在過(guò)濾網(wǎng)上,容易造成過(guò)濾網(wǎng)堵塞。為避免航空發(fā)動(dòng)機(jī)突然空中停車,戰(zhàn)斗機(jī)、導(dǎo)彈的發(fā)動(dòng)機(jī)潤(rùn)滑系統(tǒng)常采用較低的過(guò)濾精度,但較低的過(guò)濾精度可能會(huì)導(dǎo)致雜質(zhì)顆粒進(jìn)入到滾動(dòng)接觸表面之間加劇磨損。
在軸承運(yùn)行的過(guò)程中可能會(huì)由于疲勞、磨損等產(chǎn)生磨屑并進(jìn)入潤(rùn)滑系統(tǒng)中,潤(rùn)滑油中的顆粒種類及產(chǎn)生原因見(jiàn)表2。通過(guò)分析磨屑的質(zhì)量濃度、尺寸分布、形貌特征可以判斷主軸軸承的狀態(tài)。劉洪濤等[58]提出一種基于雷達(dá)圖的磨屑輪廓特征表征方法,如圖5所示,可以辨別具有相似輪廓弧度的不同磨屑,根據(jù)不同分形維數(shù)可表達(dá)不同輪廓復(fù)雜程度的磨屑,簡(jiǎn)單可靠;王洪偉等[59]針對(duì)光譜方法對(duì)大尺寸磨屑不敏感、鐵譜方法操作復(fù)雜等問(wèn)題,提出了一種基于光學(xué)的磨屑監(jiān)測(cè)技術(shù),通過(guò)試驗(yàn)驗(yàn)證該方法的有效性。
加拿大GasTOPS公司的MetalSCAN潤(rùn)滑油磨屑監(jiān)測(cè)傳感器[64?65]已成功應(yīng)用于F119?PW?100發(fā)動(dòng)機(jī);美國(guó)Eaton公司的QDM磨屑傳感器[66],已成功應(yīng)用于GE90發(fā)動(dòng)機(jī)上;英國(guó)Stewart Hughes有限公司的OLS靜電潤(rùn)滑油傳感器[67?69]已成功應(yīng)用于F100?PW?100發(fā)動(dòng)機(jī)。
2.5 溫度特征監(jiān)測(cè)方法
主軸軸承運(yùn)行過(guò)程中溫度可達(dá)200 ℃以上,接觸區(qū)局部瞬閃溫度可達(dá)600 ℃以上,對(duì)載荷、轉(zhuǎn)速、潤(rùn)滑狀態(tài)及打滑等比較敏感。主軸軸承接觸表面的溫度無(wú)法直接測(cè)量,通常通過(guò)測(cè)量其他表面結(jié)合溫度場(chǎng)計(jì)算進(jìn)行接觸表面的溫度估計(jì),結(jié)合材料性能參數(shù)可以大致判斷主軸軸承是否會(huì)發(fā)生熱損傷。常用的主軸軸承溫度監(jiān)測(cè)的方法主要有熱電偶傳感器、示溫漆,測(cè)溫晶體等。熱電偶傳感器安裝復(fù)雜,示溫漆、測(cè)溫晶體等無(wú)法監(jiān)測(cè)溫度的變化過(guò)程。一些學(xué)者提出了一些改進(jìn)方法,如圖6所示。Ebner等[13]在陶瓷盤(pán)表面通過(guò)離子束濺射方法加工了薄膜鉑電阻溫度傳感器,成功測(cè)量了彈流潤(rùn)滑下的接觸表面溫度,雖然接觸表面的傳感器會(huì)影響溫度分布,但相比其他遠(yuǎn)距離測(cè)量方法這種方法的誤差要小得多。Seoudi等[76]在潤(rùn)滑油中加入量子點(diǎn),基于量子點(diǎn)的光致發(fā)光原理成功測(cè)量了1.3 GPa接觸壓力下的接觸區(qū)的溫度,結(jié)果與理論值較為吻合。
溫度監(jiān)測(cè)對(duì)預(yù)防膠合等熱損傷比較有效,但在監(jiān)測(cè)疲勞等損傷時(shí)效果較差。因此單一溫度監(jiān)測(cè)不適用于主軸軸承的狀態(tài)監(jiān)測(cè),溫度監(jiān)測(cè)對(duì)防止主軸軸承熱損傷、研究主軸軸承的熱損傷機(jī)理具有重要意義。
關(guān)鍵詞:主軸軸承、特種軸承
相關(guān)新聞
主要業(yè)務(wù)為重大型軸承、大型軸承的研究、開(kāi)發(fā)、生產(chǎn)和銷售,熱處理服務(wù)等,產(chǎn)品廣泛應(yīng)用于風(fēng)電、盾構(gòu)、工程機(jī)械、礦山冶金、石油化工、醫(yī)療器械、光伏等各個(gè)領(lǐng)域。
洛陽(yáng)軸研科技有限公司
© 2023 洛陽(yáng)軸研科技有限公司 本網(wǎng)站支持IPV6 營(yíng)業(yè)執(zhí)照 網(wǎng)站建設(shè):中企動(dòng)力 洛陽(yáng) SEO標(biāo)簽