航空發(fā)動(dòng)機(jī)主軸軸承狀態(tài)監(jiān)測研究現(xiàn)狀與發(fā)展趨勢(一)
發(fā)布時(shí)間:
2023-01-13
來源:
航空動(dòng)力學(xué)報(bào)
航空發(fā)動(dòng)機(jī)主軸軸承(以下簡稱主軸軸承)Dn值(內(nèi)徑D與轉(zhuǎn)速n的乘積)可達(dá)3×106mm?r/min以上,接觸應(yīng)力可達(dá)2 GPa以上,溫度達(dá)220 ℃以上。與普通軸承相比,主軸軸承轉(zhuǎn)速高、載荷大、保持架沖擊嚴(yán)重、摩擦生熱量多、工作環(huán)境溫度高、難以保證良好潤滑、短時(shí)間內(nèi)存在大范圍工況變化、某些情況下存在嚴(yán)重打滑等。
航空發(fā)動(dòng)機(jī)主軸軸承(以下簡稱主軸軸承)Dn值(內(nèi)徑D與轉(zhuǎn)速n的乘積)可達(dá)3×106mm•r/min以上,接觸應(yīng)力可達(dá)2 GPa以上,溫度達(dá)220 ℃以上。與普通軸承相比,主軸軸承轉(zhuǎn)速高、載荷大、保持架沖擊嚴(yán)重、摩擦生熱量多、工作環(huán)境溫度高、難以保證良好潤滑、短時(shí)間內(nèi)存在大范圍工況變化、某些情況下存在嚴(yán)重打滑等。
主軸軸承的服役過程實(shí)際上是兩個(gè)粗糙表面的摩擦行為,Vakis等[1]討論了物理、化學(xué)、機(jī)械載荷等復(fù)雜影響下兩個(gè)粗糙表面的摩擦行為,認(rèn)為在摩擦學(xué)模型中,要考慮塑性、黏著、摩擦、磨損、潤滑以及表面化學(xué)等互補(bǔ)的非線性效應(yīng)仍需要繼續(xù)努力。
粗糙表面間的摩擦可能會(huì)導(dǎo)致軸承產(chǎn)生疲勞、磨損等失效。航空發(fā)動(dòng)機(jī)各個(gè)支點(diǎn)的軸承結(jié)構(gòu)存在明顯不同,失效表現(xiàn)存在差異。軸承服役狀態(tài)是多因素共同作用的結(jié)果。內(nèi)因包括材料、表面性能等,外因包括潤滑狀態(tài)、載荷、轉(zhuǎn)速影響等。疲勞限制主軸軸承的最終壽命,但早期的非正常失效仍占大多數(shù)[2]。
軸承材料通過不斷改進(jìn)以滿足優(yōu)良的航空發(fā)動(dòng)機(jī)主軸軸承的要求,對于含有不同元素及不同配比的軸承材料及組合,其抗磨損性能及其失效機(jī)制都會(huì)發(fā)生改變[3?4];Wakiru等[5]認(rèn)為潤滑狀態(tài)監(jiān)測可以作為機(jī)械設(shè)備的故障預(yù)警,主軸軸承的潤滑狀態(tài)監(jiān)測對故障預(yù)防具有重要意義;主軸軸承的轉(zhuǎn)速和載荷是影響失效的主要因素,對軸承承載滾動(dòng)體數(shù)量、內(nèi)外圈相對位置、接觸應(yīng)力、打滑率、接觸區(qū)溫度等都有影響[6]。
判斷主軸軸承服役狀態(tài)所檢測的主要參數(shù)包括振動(dòng)[7?9]、聲音[8]、聲發(fā)射[10]、潤滑油[11?12]、溫度[13?14]等。高端裝備通常會(huì)安裝多個(gè)傳感器,通過多傳感器信息配合信息融合算法可以獲得其狀態(tài)全、完整的描述。
1 主軸軸承主要失效模式
主軸軸承運(yùn)行在較端苛刻工況及復(fù)雜環(huán)境條件下,失效形式十分復(fù)雜且可能出現(xiàn)多種失效并存。主軸軸承的主要失效模式包括疲勞、磨損、熱損傷、打滑蹭傷、保持架失效等[15]。
1.1 疲勞
疲勞分為表面起源疲勞和次表面起源疲勞。表面起源疲勞是指表面在超過疲勞強(qiáng)度的循環(huán)壓力作用或由于氫離子的攻擊下,在表面產(chǎn)生疲勞;次表層起源的疲勞,這種疲勞與最大正交切應(yīng)力相關(guān)。L?P(Lundberg?Palmgren)理論[19]可以對軸承疲勞壽命進(jìn)行估計(jì),在此基礎(chǔ)上適用于主軸軸承的I?H(Ioannides?Harris)壽命理論基本公式。
式中△Sk代表單元體積幸存概率,N代表每一轉(zhuǎn)的應(yīng)力循環(huán)次數(shù),τ代表滾道接觸下的切應(yīng)力,τu代表材料的疲勞較限切應(yīng)力,△Vk代表應(yīng)力作用的單元體積,zk代表應(yīng)力作用深度,e、c、h代表通過試驗(yàn)確定的Weibull參數(shù)。
在復(fù)雜苛刻工況下,僅有理論計(jì)算壽命不夠可靠,裂紋在萌生與擴(kuò)展階段的晶格斷裂會(huì)伴隨著聲發(fā)射現(xiàn)象。因此可以采用振動(dòng)[21]、潤滑油光譜、磨損顆粒計(jì)數(shù)器、聲發(fā)射、溫度等類型傳感器進(jìn)行監(jiān)測。
1.2 磨損
磨損指粗糙表面在高拖動(dòng)力下表面材料以顆粒形式脫落的現(xiàn)象[22]。在理想潤滑條件下,接觸表面間會(huì)由潤滑油膜完全隔開,但實(shí)際上在高速重載的工況下,無法保證主軸軸承接觸區(qū)的粗糙峰被完全隔開。Archard[23]提出的粗糙表面磨損定律。
式中V代表磨損體積,kadh代表黏著磨損系數(shù),F代表壓力,s代表滑動(dòng)距離,σo代表材料硬度。通過公式可以計(jì)算主軸軸承的磨損體積,評估磨損狀態(tài)。
國內(nèi)外許多學(xué)者基于此對粗糙表面的磨損模型進(jìn)行了修正與改良,但由于磨損行為的復(fù)雜性,目前并沒有形成普適性規(guī)律。主軸軸承工況惡劣,其磨損模型加難以建立,所以針對主軸軸承磨損的研究大部分基于試驗(yàn)展開。Gloeckner等[24]研究了微動(dòng)磨損對主軸軸承性能的影響。
磨損會(huì)導(dǎo)致主軸軸承表面形貌變化,導(dǎo)致溫度上升、潤滑油清潔度下降、振動(dòng)增大等??梢圆捎谜駝?dòng)傳感器、溫度傳感器、潤滑油傳感器、聲發(fā)射傳感器等進(jìn)行軸承磨損的監(jiān)測。
1.3 熱損傷
主軸軸承在運(yùn)轉(zhuǎn)中的摩擦?xí)?dǎo)致一定的溫升,這種溫升幅度與載荷、轉(zhuǎn)速、潤滑狀態(tài)以及接觸表面狀態(tài)有關(guān)[25]。ISO(International Organization of Standardization)標(biāo)準(zhǔn)通過潤滑油品質(zhì)因數(shù)考慮熱效應(yīng)對軸承壽命的影響,但此標(biāo)準(zhǔn)不適用于較低或較高的轉(zhuǎn)速。
=式中Qn代表內(nèi)、外圈的摩擦熱流量,μ代表滾動(dòng)體與滾道的摩擦因數(shù),p1jp2j代表第j個(gè)滾動(dòng)體與外圈、內(nèi)圈接觸區(qū)的接觸壓力,v1jv2j代表第j個(gè)滾動(dòng)體與外圈、內(nèi)圈接觸區(qū)的相對滑動(dòng)速度。根據(jù)熱流量可以計(jì)算表面最大溫升,對比軸承材料溫度許用較限可以判斷軸承是否會(huì)發(fā)生熱損傷。
陳觀慈等[26]對高速球軸承各個(gè)熱源分別進(jìn)行生熱計(jì)算,得到了為準(zhǔn)確的高速球軸承局部生熱和總生熱,這對確定主軸軸承的工況范圍避免熱損傷具有重要意義;高速?zèng)_擊滑動(dòng)接觸在主軸軸承中比較常見,Wang等[27]研究發(fā)現(xiàn)M50鋼在高速?zèng)_擊滑動(dòng)接觸時(shí)表面損傷主要是由應(yīng)變能產(chǎn)生的熱耗散導(dǎo)致表面軟化導(dǎo)致的。瞬時(shí)熱沖擊導(dǎo)致的熱振效應(yīng)可能引起主軸軸承的剛度發(fā)生變化。
主軸軸承的設(shè)計(jì)參數(shù)、裝配工藝、變形等都會(huì)影響發(fā)熱量,工作中過高的溫度會(huì)造成潤滑劑劣化加快,零件尺寸變化,異常振動(dòng),表面燒傷甚至材料軟化脫落等??梢圆捎脺囟?、潤滑油傳感器等進(jìn)行監(jiān)測,合理調(diào)整工況參數(shù)、潤滑油流量等避免主軸軸承發(fā)生熱損傷。
1.4 打滑蹭傷
航空發(fā)動(dòng)機(jī)工作時(shí)存在大工況波動(dòng),輕載打滑蹭傷是一類非常典型的失效模式。在高速輕載情況下,非承載區(qū)中的滾動(dòng)體在離心效應(yīng)的作用下與內(nèi)圈脫離接觸,拖動(dòng)力不足產(chǎn)生打滑;剛剛進(jìn)入承載區(qū)的滾動(dòng)體突然獲得拖動(dòng)力轉(zhuǎn)速猛增出現(xiàn)打滑。
式中S代表打滑率,ω´c代表保持架理論轉(zhuǎn)速,ωc代表保持架實(shí)際轉(zhuǎn)速??梢愿鶕?jù)打滑率判斷當(dāng)前打滑情況。
打滑會(huì)引起軸承接觸副表面摩擦因數(shù)增大,容易造成磨損,主承載區(qū)溫度升高,潤滑油黏度下降并劣化加速;滾動(dòng)體與滾道間若產(chǎn)生劇烈滑動(dòng)可能導(dǎo)致接觸表面出現(xiàn)蹭傷,產(chǎn)生的局部高溫可能導(dǎo)致表面材料軟化脫落等。崔立等[28]分析了高速球軸承的打滑機(jī)理,并推導(dǎo)了滾動(dòng)體和保持架理論轉(zhuǎn)速的準(zhǔn)確計(jì)算公式,得到了滾動(dòng)體不發(fā)生打滑的臨界負(fù)荷;李軍寧等[29]提出一種高速滾動(dòng)軸承滑蹭試驗(yàn)系統(tǒng),研究了多個(gè)組合因素作用下的滑蹭規(guī)律;劉延斌等[30]提出一種具有斜面兜孔結(jié)構(gòu)的圓柱滾子軸承,并對其高速防打滑特性展開研究。
主軸軸承打滑蹭傷會(huì)導(dǎo)致接觸副表面幾何形貌產(chǎn)生變化、微裂紋萌生、軸承產(chǎn)生嘯叫、潤滑油污染等,且打滑會(huì)導(dǎo)致故障特征頻率的理論值與試驗(yàn)值產(chǎn)生較大偏差。可以通過電磁或光纖等類型的傳感器測量保持架轉(zhuǎn)速計(jì)算整體打滑率。
1.5 保持架失效
工況突變、潤滑不良等會(huì)引起保持架沖擊、打滑、卡滯等。保持架運(yùn)行中的磨損、熱變形、沖擊、碰撞、初始裂紋、高轉(zhuǎn)速下的離心應(yīng)力以及加工損傷等都可能導(dǎo)致過早失效。
劉魯?shù)?sup>[31]認(rèn)為造成高Dn值軸承保持架斷裂的主要原因?yàn)楦咿D(zhuǎn)速下的離心應(yīng)力與兜孔圓角過小造成的應(yīng)力集中;主軸軸承的載荷對保持架性能具有較大影響,Takabi等[32]研究認(rèn)為高速重載條件下滾動(dòng)體和保持架接觸力過大會(huì)引起保持架磨損、不穩(wěn)定運(yùn)動(dòng)等最終導(dǎo)致軸承失效;張濤等[33]總結(jié)了保持架動(dòng)態(tài)特性理論和試驗(yàn)研究進(jìn)展、保持架穩(wěn)定性影響因素、穩(wěn)定性判據(jù)和優(yōu)化準(zhǔn)則,討論了存在的不足,對提升主軸軸承保持架穩(wěn)定性具有一定參考。
主軸軸承的應(yīng)力狀態(tài)、保持架幾何參數(shù)、潤滑狀態(tài)、保持架質(zhì)量等對保持架都有較大影響。保持架潤滑不良會(huì)導(dǎo)致摩擦力矩變化,磨損加劇、精度下降甚至保持架斷裂??刹捎谜駝?dòng)、溫度、潤滑油、聲學(xué)傳感器等對主軸軸承的保持架進(jìn)行監(jiān)測并分析,但現(xiàn)有方法在觀測保持架運(yùn)動(dòng)、測量保持架磨損、預(yù)防保持架失效的準(zhǔn)確性及計(jì)算速度等方面仍存在一定不足。
關(guān)鍵詞:主軸軸承、特種軸承
相關(guān)新聞
主要業(yè)務(wù)為重大型軸承、大型軸承的研究、開發(fā)、生產(chǎn)和銷售,熱處理服務(wù)等,產(chǎn)品廣泛應(yīng)用于風(fēng)電、盾構(gòu)、工程機(jī)械、礦山冶金、石油化工、醫(yī)療器械、光伏等各個(gè)領(lǐng)域。
洛陽軸研科技有限公司
© 2023 洛陽軸研科技有限公司 本網(wǎng)站支持IPV6 營業(yè)執(zhí)照 網(wǎng)站建設(shè):中企動(dòng)力 洛陽 SEO標(biāo)簽